Шпаргалка
Биохимия крови и мочи
Скачать шпаргалку [37,9 Кб] Информация о работе
Биохимия крови и мочи
1. Белки крови, их количественное содержание и выполняемая функция. Причины изменения содержания белков в плазме крови. Причины появления белков в моче.
Содержание
Белок общий в плазме - 65 - 85гр/л
Подразделяются на:
n альбумины 40-50гр/л
n глобулины 20-30гр/л
n Фибриноген 2-4гр/л
При электрофорезе на бумаге удается получить несколько белковых фракций из плазмы крови
n альбумины 54-58%
n a1глобулины - 6-7%, a2глобулины 8-9%,bглобулины13-14 %, gглобулины 11-12%
Функции белков.
n транспортная. Соединяясь с рядом веществ (холистерин, билирубин и др.), а так же с рядом лекарственных веществ (пинициллин) они (белки) переносят их в ткани
n поддержание рН
n резерв аминокислот
n защитная. Принимают активное участие в свертывании крови. Фибриноген - основной компонент системы свертывания крови. Важная роль в процессах иммунитета.
n поддержание уровня катионов
n поддержание осмотического давления (0,02 атм плазмы крови). Являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из кровяного русла
Характеристика некоторых белков
Сывороточный альбумин.
Состоит из 1-й полипептидной цепи содержащий около 585 аминокислот, имеет 17 дисульфидных мостиков. Выделяют 3 домена. Структуры доменов сходны. Молекула представляет собой эллипсоид размером 3 на 15 нм. Это типичный простой белок. Концентрация в плазме чуть выше 50 гр/л.
n Основная функция - участие в осмотической регуляции. В кровяном русле находится только 40% альбуминов, остальная часть входит в состав внеклеточной тканевой жидкости. Около 5% альбумина за 1 час покидает русло крови и возвращается с лимфой через грудной лимфатический проток.
n Транспортная. Заключается в переносе свободных жирных кислот, перенос бирирубина, перенос перидоксаля, глютатиона, Са, Zn. Кроме того альбумины переносят часть стероидов, участвуют они в транспорте многих лекарственных веществ, (например сульфаниламидных препоратов, пиницилина, аспирина и др.)
n Резерв белков в организме
Период полураспада примерно 7 суток.
Синтезируются в печени 13-18 гр/сут.
Фракция альбуминов при электрофорезе делится на 2
n Альбумины А
n Альбумины Б
Возможна анальбуминемия - отсутствие альбуминов в плазме крови. При этой патологии нарушается транспорт липидов, повышается уровень холистерола, ЛП и фосфоглицеридов.
Если концентрация альбуминов снижается ниже 30гр/л, то обычно развивается отеки.
Причина изменения содержания.
Повышение показателя имеет место при дегидратации,шоке,г емоко нцентрации, внутривенном введении больших количеств концентрированных «растворов» альбумина.
Снижение показателя имеет место при недоедании, симндроме малабсорбции, острой и хронической печеночной недостаточности, опухолях, лейкозах.
a1глобулиниa2глобули ны.
Ингибиторыпротеиназ. a1антитрипсин,a2макр оглоб улин, интер-a-трипсиновый ингибитор. Они выполняют роль ингибиторов ферментов свертывания крови, разрушают протеиназы, поступающие в кровь при повреждении клеток. Ткань легких очень чувствительна к протеиназам.
У взрослых людей с недостаточностью a1антитрипсином обычноразвиваетсяэмф изема легких.
Церулоплазмин.
Относится к фракции a2глобулинов. Медьсодержащий гликопротеин плазмы, обладающий оксидазной активностью. При недостатке возникает болезнь Коновалова-Вильсона. Характеризуется накоплением меди в печени и головном мозге, в результате развивается поражение печени и достаточно выраженные неврологические симптомы. Гаптоглобины.
Составляют 25% всех a2глобулинов. Это белки связывающие гемоглобин, которые появляются в крови в результате сосудистого гемолиза. Такое связывание предотвращает потерю из организма железа с одной стороны, а с другой защищает почки от повреждения гемоглобином. Далее этот комплекс (гаптоглобин связавший гемоглобин) поглощается клетками ретикулоэндотелиальн ой системы. Низкий уровень этих белков наблюдается у больных с гемолитической анемией.
Для ряда белков a-глобулиновой фракции функции неизвестны. Это такие как:
n Кислый a1гликопротеид. Белок острой фазы.
n aфетоглобулин и др.
bГлобулины.
Так же состоят из различных белков.
Трансферин.
Обеспечивает связывание и перенос железа. Он связывает 2 атома железа на молекулу и предотвращает потерю железа из организма. Трансферин, насыщен железом примерно на 1/3 в норме. Его концентрация повышается при недостатке железа.
Гемопексин.
Связывает свободный гем, предотвращая выделения с мочой и потеря железа. Комплекс гем-гемопексин улавливается печенью, где железо высвобождается для последующего использования. (Синтезируется в печени. Каждая молекула гемопексина связывает одну молекулу гема.)
С-реактивный белок.
Острофазный белок. Его определение используется в качестве показателя остроты патологических процессов наиболее часто при ревматизме.
Значительная часть белков фракций aиbглобулиновявляютс яглик опротеидами и липопротеидами.
Синтез и распад гликопротеинов.
Гликопротеины синтезируются в большинстве своем в печени. Их гетероолигосахаридны й компонент содержит галактозу, моннозу, фукозу, рамнозу, аминосахара, сиаловые кислоты. У гликопротеинов концевым свободным углеводным остатком чаще всего является сиаловая кислота. Потеря данным белком сиаловой кислоты приводит к поглощению его гепатоцитами и последующим разрушению. Оказывается в мембранах гепатоцитах имеются рецепторы, которые связывают D-сиало-гликопротеин ы (гликопротеины лишившиеся сиаловой кислоты). Например концентрация D-виало-гликопротеин ов у больныхциррозомпечен и увеличивается в 3-4 раза.
g-Глобулины.
Это белки плазмы, входящие в группу иммуноглобулинов. Они относятся к белкам, выполняющим защитную функцию. Иммуноглобулины вырабатываются в ответ на попадание во внутреннюю среду организма чужеродных веществ - антигены. Антитела способны связывать антигены и тем самым устранять чужеродные вещества. Иммуноглобулины высоко специфичны.
Все иммуноглобулины - белки с четвертичной структурой. Все иммуноглобулины содержат тяжелые Н-цепи и легкие L-цепи. По 2.
Эти цепи соединены между собой дисульфидными мостиками. Некоторые из иммуноглобулинов являются олигомерами, т.е. состоят из нескольких 4-х цепочечных структур.
В зависимости от состава Н и L цепей иммуноглобулины делятся на классы:
IgG
IgA основные
IgM IgDIgE минорные
Изучение структуры антител показало, что у всех легких и тяжелых цепей можно выделить вариабельные (В) и постоянные (С).
Вариабельные участи расположены на n-концах L и H цепей в областиВучастка,расп оложе ны антигенсвязывающие центры, последние специфичны для каждого индивидуального антитела и позволяет узнавать за счет комплементарности свой антиген. Именно В участки обеспечивают специфичность.
С-участки отвечают за другие функции (например работают при связывании комплемента - еще одна защитная система, обеспечивающая перенос антител через плацентарный барьер).
Углеводные гетероолигосахаридны е группировки С-участков определяют скорость разрушения антител.
Причина изменения содержания.
Повышение показателя имеет место при болезнях печени, инфекционнонм гепатите, билиарном циррозе, гемохроматозе, системной красной волчанке, плазмоклеточной миеломе, лимфопро лиферативных заболеваниях, саркоидозе, острых и хронических инфекциях, особенно при лимфогранулеме, обусловленной венерическим заболеванием, тифе, лейшманиозе, шистоматозе, малярии
Снижение показателя имеет место при недостаточном питании, врожденной агаммаглобулине мии, лимфолейкозе.
Фибриноген плазмы.
Норма 2-6 г/л СИ (0,2-0,6 г% )
Повышение показателя имеет место при гломеру лонефрите, нефрозе (иногда), инфекциях
Снижение показателя имеет место при диссеми-нированном внутрисосудистом свертывании крови (случаи беременности с отслойкой плаценты, эмболии околоплодными водами, стремительные роды), при менингококковом менингите, раке простаты с метастазами, лейкозах, при острой и хронической печеночной недостаточности, врож денной фибрино генопении
Изменение белков при патологии.
Гиперпротеинемии. Увеличенное содержание белков плазмы крови. Возникают при больших потерях воды вследствие ожогов, диарея у детей, рвота при непроходимости верхних отделов кишечника. Резкое увеличение g-глобулинов при миеломной болезни (интенсивно образуются миеломные белки). Содержание белка может достигать 150-160 гр/л, т.е. увеличиваться в 2 раза по сравнению с нормой.
Гипопротеинемия. Снижения содержания общего белка в плазме крови. Развивается за счет снижения содержания альбуминов. Общий белок может снижаться до 3-4- гр/л. Причины. Голодание, тяжелое поражение печени, нефрозы, увеличение проницаемости стенок капилляров.
Диспротеинемии. Нарушение % соотношения отдельных фракций. Часто оно характерно для тех или иных заболеваний.
“Белки острой фазы”.
Организм наш на тканевые повреждения, инфекцию и др. воздействия отвечает комплексом направленных реакций, обозначаемых как “острофазный ответ”.
Внешнее проявление этого ответа: лихорадка, лейкоцитоз, ускоренная СОЭ. В организме происходят более глубокие изменения, в том числе и изменение экспрессии генов в клетках разных тканей, которое проявляется через изменение содержания белков в празме крови. В плазме при разных воздействиях нарастает концентрация так называемых - острофазных белков: С-реактивный белок его активность может увеличиваться в 1000-2000 раз, сывороточный амилоид - в 100 раз, a2макроглобулин - в 300 раз, кислый a1-гилкопротеин в 15 раз, острофазный a1глобулин - в 10-16 раз, a1антитрипсин,церуло плазм ин,фибриноген - в 2-3 раза.
Многие члены этого семейства играют важную роль в защите организма от чужеродных инвазий, от патогенных агентов и тканевых повреждений, действие одних белков ограничивается областью тканевых повреждений, другие участвуют в очистке организма от чужеродных агентов, третьи инициируют тканевую рапорацию. Отличительной особенностью является то, что многие из острофазных белков являются ингибиторами протеиназ, т.е. эти белки нейтрализуют протеиназы, поступающие во внеклеточную среду или кровь при гибели клеток в результате воздействия повреждения или инфекций.
Ингибиторами протеиназ являются:
1. Острофазный a1глобулин (цистиинпротеиназный ингибитор).
2. a1антитрипсин - ингибитор сериновых протеиназ
3. a2макроглобулин - ингибитор широкого спектра действия.
Некоторые из белков являются модуляторами воспалительных и иммунных ответов (С-реактивный белок, кислый a1гликопротеин, сывороточный амилоидный протеин).
Синтез и выделение острофазных белков контролируется целой системой тканевых гормонов типа интерлейкинов, так же интерфероном, глюкокортикоидами и др. факторами, регулирующими экспрессию генов острофазных белков. Таким образом острофазные белки наделены многими гомеостатическими функциями и являются одним из главных факторов неспецифической системы защиты организма.
Причины появления в моче.
Белок. В нормальной моче имеется незначительное количество белка, которое не обнаруживается качественными пробами, поэтому считается, что белка в моче нет.При ряде заболеваний в моче появляется белок — протеинурия.
1. Внепочечные протеинурии наблюдаются при циститах, пиелитах, простатитах, уретритах и т. д. Количество белка, как правило, не превышает 1%.
2. Почечные протеинурии при функциональных, нарушениях — неорганического поражения паренхимы, повышена проницаемость почечного фильтра. Это может быть при охлаждении, физическом и психическом напряжении.
Ортастатическая протеинурия развивается чаще у детей дошкольного и школьного возраста.
Органические протеинурии — поражена паренхима и увеличена проницаемость клубочковых капилляров, наблюдается при острых и хронических гломерулонефритах, нефрозах, инфекционных и токсических состояниях, застойных явлениях в почках.
Качественный состав белков мочи (электрофорез) не показал специфических изменений при различных видах протеинурии, за исключением протеинурии при парапротеинемиях, в особенности при миеломной болезни, болезни Вальденстрема.
2. Гемоглобин, его содержание в крови, биологическая роль. Причины изменения содержания в крови. Гипоксия, их причины. Гемоглобинурия.
Содержание в крови:
Мужчины 135-180гр/л
Женщины 120-160гр/л
Биологическая роль
Гемоглобин это идеальный дыхательный белок, который обеспечивает
1. транспорт кислорода к тканям,
2. транспорт углекислого газа и
3. гемоглобиновый буфер (основная буферная емкость).
Изменение числа эритроцитов.
Повышение числа Э и их массы (гематокрит) в целом указывает на эритроцитоз, который может быть первичным (поражение эритропоэза, заболевания ситемы крови) или вторичным. Вторичный эритроцитоз чаще всего развивается вследствие кислородного голодания тканей и наблюдается при легочных заболеваниях, врожденных пороках сердца, при гиповентиляции, пребывании на высоте, накоплении карбоксигемоглобина при курении, молекулярных изменениях гемоглобина, нарушении выработки эритропоэтина вследствие образования опухоли или кисты. Относительное повышение Э определяется при гемоконцентрации, например, при ожогах, диарее, приеме диуретиков и т. д.
Понижение НЬ и Э является прямым непосредственным указанием на анемию (малокровие). Острая кровопотеря до одного литра принципиально не влияет на морфологию Э. Если в отсутствие кровопотери число Э снижается, то, естественно, следует предположить нарушение эффективности эритропоэза. Эффективный (действительный) эритропоэз может быть оценен с помощью следующих тестов: определения уровня утилизации железа Э, определения количества ретикулоцитов и скорости их созревания, измерения продолжительности жизни эритроцитов и других функциональных характеристик, определяющих их полноценность.
Строение и синтез.
Гемоглобин это гемопротеид. Это неферментный белок имеющий интересную структуру. В его состав входит 4 полипептидные цепи. Есть несколько видов гемоглобина: гемоглобин А есть и фетальный гемоглобин в состав которого входят несколько иные цепи.
Фетальный гемоглобин есть у любого человека, другое дело, что у плода это основной гемоглобин.
Обычный гемоглобин взрослых содержит 2 парные a и 2 парные b цепи каждаяполипептиднаяц епьсо единяется с гемом. 4 цепи - 4 гема.
Миоглобин похожий по структуре белок - мышечный белок, который в отличии от гемоглобина состоит из 1 полипептидной цепи и 1-го гема. Имеет значимость в доставке кислорода внутри клетки до митохондрий.
В процессе присоединения кислорода происходит конформационные изменения субъединиц - положительная кооперативность. Эти конформационные изменения имеют огромную значимость в процессе связывания кислорода в легких и в процессах его отдачи.
Гем: Это очень устойчивая структура, практически это самая длинная замкнутая сопряженная система, которая образует порфириновое ядро состоящее из 4 пиррольных колец соединенных метинильными мостиками. Кроме того здесь имеются боковые цепи. Цитохромы отличаются от гема составом боковых цепей, но порфириновое ядро у них такое же.
Железо связано с пиррольными ядрами, и за счет координационных связей оно связано еще и с азотом имидозольных ядер гистидина полипептидных цепей. Обеспечивается связывание кислорода и образование оксигемоглобина. Соединение в котором железо 3 валентно - метгемоглобин, образуется при действии сильных окислителей (лаки, анилиновые окраски). В крови всегда присутствует метгемоглобин не выше 2%. Метгемоглобин - производное гемоглобина не способен транспортировать кислород.
Восстановление гемоглобина происходит за счет фермента -метгемоглобинредукт азы. У детей этот фермент крайне неактивен.
В боковой цепи содержится 4 метильные группы, 2 винильных и 2 остатка пропионовой кислоты.
Распад гемоглобина происходит достаточно быстро. За сутки синтезируется 6 грамм. Валовый синтез гемоглобина достаточно высок. Гемоглобин в ходе функционирования эритроцита может превращаться в метгемоглобин, могут происходить различные процессы диструктирующие липидный бислой мембран, поскольку перикисное окисление мембран эритроцитов происходит.
Синтез глобина идет на рибосомах, а синтез гема идет из соединений заменимых:
во-первых для синтеза нужна заменимая аминокислота глицин, может образовываться
из липидов, из продуктов распада углеводов, из других аминокислот и тд.
во-вторых сукцинилКоА, образуется в циклу Кребса, в него превращаются углеродные
скелеты нескольких аминокислот.
Через аминоорнитиновую кислоту образуется так называемая эпсилонаминолевулино вая кислота, далее идет реакция дегидротации и циклизация с образованием порфобилиногена1.
Порфириновое ядро вместе с боковыми цепями носит название протопорфирин9. Происходящие дальше процессы приводят к образованию этого соединения. Потом железо присоединяется с образованием гемоглобина. Синтез требует затрат энергии и на любом из этапов этот синтез может нарушаться.
Что вам здесь нужно знать? Гем синтезируется, требует затрат энергии, синтез идет из простых достаточно соединений.
Гипоксии.
Гипоксия (кислородное голодание) — состояние, возникающее при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического-окисл ения.
1. Гипоксия вследствие понижения РО2, во вдыхаемом воздухе (экзогенная гипоксия).
2. Гипоксия при патологических процессах, нарушающих снабжение тканей кислородом при нормальном содержании его в окружающей среде. Сюда относятся следующие типы: а) дыхательный (легочный); б) сердечно-сосудистый (циркулятор-ный); в) кровяной (гемический); г) тканевый (гистотоксический): д) смешанный.
Гипоксия вследствие понижения парциального давления кислорода во вдыхаемом воздухе. Этот вид гипоксии возникает главным образомприподъеме на высоту. Может наблюдаться и в тех случаях, когда общее барометрическое давление нормально, но РО2, понижено, например при авариях в шахтах, неполадках в системе кислородообеспечения кабины летательного аппарата, в подводных лодках и т.п., а также во время операций при неисправности наркозной аппаратуры,
При экзогенной гипоксии развивается гипоксеми я, т.е. уменьшается парциальное давление кислорода в артериальной крови и снижается насыщение гемоглобина кислородом.
Гипоксия при патологических процессах, нарушающих снабжение или утилизацию кислорода тканями.
Дыхательный (легочный) тип гипоксии возникает в связи с альвеолярной гиповентиляцией, что может быть обусловлено нарушением проходимости дыхательных путей (воспалительный процесс, инородные тела, спазм), уменьшением дыхательной поверхности легких (отек легкого, пневмония и т. д.).Обычно нарушается также выведение из организма углекислого газа.
Сердечно-сосудистый (циркуляторный) тип гипоксии наблюдается при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей. Для газового состава крови в типичных случаях циркуляторной гипоксии характерны нормальные напряжение и содержание кислорода в артериальной крови, снижение этих показателей в венозной крови и высокая артерио-венозная разница по кислороду.
Кровяной (гемический) тип гипоксии возникает в результате уменьшения кислородной емкости крови при анемиях, обусловленных значительным уменьшением эритроцитной массы или резким понижением содержания гемоглобина в эритроцитах. В этих случаях Ро, в венозной крови резко снижено.
Гемическая гипоксия наблюдается также при отравлении оксидом углерода (образование карбоксигемоглобина) и метгемоглобинообразо вател ями (метгемогло-бинемия) , а также при некоторых генетически обусловленных аномалиях гемогло-
бина.
Тканевый (гистотоксический) тип гипоксии обычно обусловлен нарушением способности тканей поглощать кислород из крови. Утилизация кислорода тканями может затрудняются в результате угнетения биологического окисления различными ингибиторами, нарушения синтеза ферментов или повреждения мембранных структур клетки. Типичным примером тканевой гипоксии может служить отравление цианидами.
Гемоглобинурия
Гемоглобинурии — обусловлены внутрисосудистым гемолизом эритроцитов.
Первичные — это холодовая, маршевая пароксизмальная.
Вторичные — это переливание несовместимой крови, отравление сульфаниламидами, анилиновыми красками, грибами и т. д.
Гемоглобинурия - обнаружение в моче крови в виде растворенного кровяного пигмента
Гематурия - обнаружение в моче крови в форме красных кровяных клеток.
Почечная гематурия - основной симптом почечного нефрита
Внепочечная гематурия - при воспалительных процессах или травмах мочевых путей.
Глюкоза крови. Содержание глюкозы в крови, регуляция содержания глюкозы в крови. Причины изменения уровня глюкозы в крови и появление ее в моче.
Содержание
Глюкоза - 3,3-5,5 мМ/л
кишечник распад гликогена перевращение др. моносах. глюконеогинез
ГЛЮКОЗА
окисление окисление окисление пентозный
до лактата до СО2 и Н2О до глюкурон. путь окисл.
анаэроб. аэроб. усл. кислот
синтез синтез синтез синтез синтез
липидов азотосодерж. др. моносахар. аминокислот гликогена
соединений и их производных
Транспорт глюкозы из крови в клетки путем облегченной диффузии, т.е. по градиенту концентрации с участием белка-переносчика. Эффективность работы этого транспорта в клетках большинства органов и тканей зависит от инсулина. Оказывается инсулин увеличивает проницаемость наружных клеточных мембран для глюкозы увеличивая количество белка-переносчика за счет дополнительного его поступления из цитозоля в мембрану. Основная масса клеток является инсулин зависимыми. Исключение составляют эритроциты, гепатоциты и клетки нервной ткани. Поступление в эти клетки глюкозы не зависит от инсулина, поэтому их называют инсулин независимые клетки.
С другой стороны быстрое превращение глюкозы в глюкозу-6-фосфат позволяет поддерживать крайне низкую концентрацию глюкозы в клетках. Тем самым сохраняется градиент концентрации глюкозы между внеклеточной жидкостью и клеткой.
МОБИЛИЗАЦИЯ ГЛИКОГЕНА.
Гликоген как резерв глюкозы накапливается в клетках в постадсорбционном периоде (после всасывания) и расходуется затем.
Расщепление гликогена в печени получило название - мобилизация гликогена. Происходит за счет фермента гликоген-фосфорилазы . Он
катализирует расщепление a-1,4-гликозидные связи в молекулах гликогена.
Гликоген ® гл-1-ф <—-> гл.-6-ф -> глюкоза + НзРО4 (C6H10О5)n фосфоролиз фосфоглюкомутаза глюкоза-6-фосфотаза
Отщепление монозного звена идет в виде гл.-1-фосфата. Как же расщепляются a-1,6-гликозидные связи? Оказывается здесь принимают два фермента : деветвящий фермент и амило-1,6-гликозидаз а.
Судьба глюкозы-1-фосата. Оказывается за счет активного фермента фосфоглюкомутазы (катализирует прямую и обратную реакцию) глюкоза-1-фосфат превращается в глюкозу-6-фосфат. Если в клетках есть фермент, отщепляющий фосфорил от глюгоза-6-фосфат (глюкоза-6-фосфотаза ),то далее образуется свободная глюкоза и фосфорная кислота.
Свободная глюкоза может проникать через наружную клеточную мембрану и поступать в кровяное русло. Ели же глюкозы-6-фосфотазы в клетках нет, то глюкоза может утилизироваться только данной конкретной клеткой.
Поступление глюкозы не нуждается в дополнительном притоке энергии, фосфоролиз идет без участия АТФ. В большинстве органах и тканях человека глюкоза-6-фосфотаза отсутствует поэтому запасенный в них гликоген используется только для собственных нужд. Мышечная ткань, костная, дентин, цемент и др.
Глюкоза-6-фосфотаза имеется только в трех органах: печень, кишечник, почки.
Наиболее существенным в связи с запасами является наличие этого фермента в гепатоцитах. Поскольку печень содержит весьма солидные запасы гликогена. И вообще печень выполняет роль буфера который поглощает глюкозу при повышенном содержании ее в крови и поставляет глюкозу в кровь когда содержание ее начинает падать.
Регуляция процессов синтеза и распада гликогена.
Сопоставим эти процессы.
Эти процессы различны. Это обстоятельство дает возможность раздельно регулировать синтез и распад гликогена.
Регуляция осуществляется на уровне 2 ферментов : гликогенфосфорилазы и гликогенсинтетазы.
Основным механизмом регуляции активности этих ферментов является их ковалентная модификация путем фосфорилирования - дефосфорилирования.
Фосфорилированная фосфорилаза активна (отвечает за расщепление гликогена)ее называют фосфорилаза-А. В то время как фосфорилированная гликогенсинтетаза неактивна, ( активная форма отвечает за синтез) а дефосфорилированные формы наоборот. Дефосфорилированная фосфорилаза неактивна - фосфорилаза-В.
Если оба эти фермента находятся в фосфорилированной форме ( фосфорилаза - активна), то в клетке идет расщепление гликогена с образованием глюкозы. В дефосфорилированном состоянии (дефосфорилированная гликогенсинтетаза - активна) наоборот идет синтез гликогена из глюкозы.
Поскольку гликоген печени играет роль резерва глюкозы для всего организма, то его синтез и распад должен несомненно контролироваться надклеточными регуляторными механизмами, работа которых направлена на поддержание постоянной концентрации глюкозы в крови. Дело в том, что например падение содержания глюкозы в крови ниже 2,2 млмоль/литр -тяжелейший гипогликемический шок, кома, смерть. Организм реагирует на снижение глюкозы крайне отрицательно. Эти механизмы гормональной регуляции должны обеспечивать исключение синтеза гликогена при повышенной концентрации глюкозы в крови и в то же время усиливать расщепление гликогена при падении концентрации глюкозы в крови.
РАСПАД ГЛИКОГЕНА В ПЕЧЕНИ
Первичным сигналом стимулирующим мобилизацию гликогена в печени является снижение концентрации глюкозы в крови. Если вы хотели есть, но вас отвлекли как ребенка и ничего не давать, то дальше он уже не просит есть. Почему?
1 В ответ на это а-клетки островков Лангерганса панкреатической железы выбрасывают в кровь гормон ГЛЮКАГОН.
2 Глюкагон циркулирующий в крови взаимодействует со своим белком-рецептором находящимся на внешней стороне наружной клеточной мембраны и образует гормон-рецепторный комплекс.
3 Затем с помощью специального механизма после образования гормон-рецепторного комплекса происходит активация фермента аденилатциклазы. (G белки меняют свою конформацию и переводят в активную форму аденилатциклазу).
4 Активная форма начинает образовывать циклический АМФ из АТФ.
5 ЦАМФ способен активировать еще один фермент - протеинкиназа. Этот фермент состоит из 4 субъединиц : 2-х регуляторных и 2-х каталитических. Две молекулы ЦАМФ присоединяются к регуляторным субъединицам => происходит изменение конформации и высвобождаются каталитические субъединицы.
6 Каталитические субъединицы обеспечивают фосфорилирование ряда белков, в том числе ферментов. В частности они обеспечивают фосфорилирофание гликогенсинтетазы и это сопровождается блокированием синтеза гликоген. Кроме этого происходит фосфорилирование киназы-фосфорилазы, (слово киназа означает фосфорилирование) которая фосфорилирует гликогенфосфорилазу. Отсюда активация расщепления гликогена с выходом глюкозы в кровь.
7 Выброшенная глюкоза в кровь увеличивает концентрацию доводя ее до нормальных величин.
Стимуляция расщепления гликогена в печени происходит так же за счет выброса адреналина.
1 В качестве главных посредников здесь выступают Р рецепторы в гепатоцитах. Они связывают адреналин т.е. образуется гормоно-адреналиновы й комплекс.
2 После образования гормоно-рецепторного комплекса происходит повышение содержания ионов Са в клетках.
3 Са стимулирует Са-зависимую киназу фосфорилазы. Которая в свою очередь активирует фосфорилазу путем ее фосфорилирования.
СТИМУЛЯЦИЯ СИНТЕЗА ГЛИКОГЕНА
Студент получил стипендию и наелся. Съел много сладких вещей. В этом случае наблюдается повышение содержания глюкозы в крови. Что является внешним сигналом для гепатоцитов в отношении стимуляции синтеза гликогена и связывания таким образом лишней глюкозы из русла крови. Срабатывает следующий механизм.
1 При повышении концентрации глюкозы в крови путем пассивной диффузии повышается содержание глюкозы в гепатоцитах. Это повышение содержания глюкозы в крови очень сложным (в основном это аллостерическая модуляция ) механизмом приводит к активации фосфопротеинфосфотаз ы.
2 Который вызывает дефосфорилирование гликогенсинтетаза, отщепляя от фосфорилирофанных форм фосфорилазы и гликогенсинтетазы фосфорную кислоту и поэтому
3 Дефосфорилированная гликогенсинтетаза превращается в активную форму, что резко стимулирует синтез гликогена.
4 Как только концентрация выравнивается глюкозы в крови так этот механизм выключается.
В снижении фосфорилазной активности в гепатоцитах определенную роль играет инсулин.
1 Выделяется в ответ на повышение концентрации глюкозы в крови. Его связывание с инсулиновыми рецепторами приводит к активации в клетках печени фермента фосфодиастеразы.
2 Это фермент который расщепляет циклическую АМФ. А значит прерывающего активацию гликогенфосфорилазы.
Как только мы съедаем много углеводов мы каждый раз своеобразно бьем кнутом по нашей панкреатической железе, заставляя, выбрасывать инсулин. Отсюда истощение инсулярного аппарата, который наблюдается у людей с неблагополучным статусом.
Регуляция содержания глюкозы в крови и метаболизма углеводов в организме.
Контроль метаболизма углеводов в организме человека осуществляется единой нейрогуморальной системой. Однако в ее работе можно выделить три группы механизма:
1. Контроль с помощью нервных механизмов. Возбуждение того или иного отдела ЦНС далее передача импульса по нервным стволам, далее выделение медиаторов и далее воздействие на обмен углеводов в клетке.
2. Контроль с помощью нейрогормональных механизмов. Возбуждение подкорковых метаболических центров, выделение гормонов гипоталамуса, выделение гормонов гипофиза, выделение гормонов периферических желез внутренней секреции и наконец воздействие гормонов на метаболизм углеводов в клетке.
3. Контроль с помощью метаболитно-гумораль ных механизмов. Например повышение концентрации глюкозы в крови приводит к повышению продукции инсулина b клетками, а далее следует активацияпроцессовус воени я глюкозы клетками.
Одной из важнейших задач системы регуляции обмена углеводов является поддержание концентрации глюкозы в крови на определенном уровне ( в пределах 3,3-5,5 млмоль/л). Эта концентрация обеспечивает нормальное снабжение клеток различных органов и тканей этим моносахаридом, который служит для них источником энергии и источником пластического материала.
Постоянная концентрация глюкозы в крови - есть результат очень сложного баланса процессов поступления глюкозы в кровь и процессов ее утилизации в органах и тканях.
Важную роль в поддержании концентрации глюкозы играет эндокринная система человека. Целый ряд гормонов повышает содержание глюкозы в крови: глюкагон, адреналин, соматотропин (СТГ), йодированные тиронины, глюкокортикоиды (кортизол).
Глюкагон повышает содержание глюкозы в крови за счет стимуляции процессов мобилизации гликогена в печени. Он стимулирует процесс глюконеогенеза, за счет повышения активности одного из фермента глюконеогенеза : фруктоза-1,6-бисфосф отазу .
Глюкагон выделяется a-клетками островков Лангерганса при снижении концентрации глюкозы в крови. Поскольку ответная реакция на повышение содержания глюкагона в крови базируется на изменении активности уже имеющихся в клетках ферментов, наблюдается быстрое повышение концентрации глюкозы в крови. Глюкагон не оказывает не оказывает влияние на скорость расщепления гликогена в мышцах, поскольку мышцы не имеют рецепторов к этому гормону.
Адреналин. Он секретируется в кровь мозговым вещ-вом надпочечников в экстремальных ситуациях.
В первую очередь адреналин стимулирует расщепление гликогена в мышцах и таким образом обеспечивает миоциты энергетическим топливом. Однако в мышцах нет фермента глюкоза-6-фосфотазы, поэтому при расщеплении гликогена в мышцах свободной глюкозы образуется и она не поступает в кровь, т.е. за счет усиления скорости распада гликогена поддерживается энергетика самих мышц. В то же время адреналин способен ускорять расщепление гликогена в печени за счет активации фосфорилазы. Образующаяся глюкоза поступает из гепатоцитов в кровь, что приводит к повышению ее концентрации, поэтому все ситуации сопровождающиеся выбросом адреналина или введением адреналина естественно сопровождается повышением концентрации глюкозы в крови. Это повышение содержания глюкозы развивается очень быстро, поскольку как и в случае глюкагона обусловлено повышением активности имеющихся в гепатоцитах ферментов.
Кортизол. Как и другие глюкокортикоиды вызывает повышение содержания глюкозы в крови за счет 2 основных эффектов:
Во-первых он тормозит поступление глюкозы из крови в клетки ряда перефирических тканей( мышечная соединительная )
Во-вторых кортизол является основным стимулятором глюконеогенеза. Причем стимуляция глюконеогенеза является главным механизмом ответственным за увеличение концентрации глюкозы при выбросе кортизола или при его введении.
Эффект кортизола развивается медленно содержание глюкозы в крови начинает повышаться через 4-6 часов после введения или выброса и достигает максимума примерно через сутки. Повышение содержания глюкозы в крови при действии кортизола сопровождается одновременно увеличением содержания гликогена в печени. В то же время при введении глюкагона содержание гликогена в печени снижается.
Соматотропный гормон гипофиза так же в целом вызывает повышение содержания глюкозы в крови.
Но следует помнить, что введение этого гормона вызывает 2-х фазный ответ:
1 в течении первой четверти часа содержание глюкозы в крови снижается,
2 а затем развивается продолжительное повышение ее уровня в крови.
Механизм этой ответной реакции окончательно не выяснен. Предполагают, что на первом этапе происходит небольшое нарастание содержание инсулина в крови. За счет чего и происходит снижение содержания глюкозы. В более отдаленные периоды повышение содержания глюкозы в крови является следствием нескольких эффектов.
Во-первых это уменьшение поступления глюкозы в некоторые ткани (мышцы).
Во-вторых повышение поступления в кровь глюкагона из поджелудочной железы.
В-третьих уменьшение скорости окисления глюкозы в клетках в результате повышенного поступления в клетки жирных кислот (более высокое энергетическое топливо). Жир. кис. ингибируют пируваткиназу. Длительное введение соматотропного гормона приводит к развитию сахарного диабета.
Тироксин (Т4, тетрайодтиранин). Известно, чтопригипертириозеок ислен ие глюкозы идет с нормальной или повышенной скоростью. Содержание глюкозы натощак повышенно, одновременно у больных снижено содержание гликогена в печени.
Инсулин - гормон снижающий содержание глюкозы в крови. Выделяется в кровь b-клетками в ответ на повышение содержание глюкозы в крови. Снижение содержания глюкозы в крови обусловлено тремя группами эффектов:
1. Инсулин повышает проницаемость клеточных мембран для глюкозы за счет активации белка-переносчика и способствует переходу глюкозы из крови и межклеточной жидкости в клетки.
2. Инсулин улучшает усвоение глюкозы клетками
а) стимулирует фосфорилирование глюкозы и ее окислительный распад
б) ускоряет синтез гликогена
в) превращение глюкозы в триглицериды
3. Тормозит процессы глюконеогенеза и расщепление гликогена в гепатоцитах до глюкозы.
Ответная реакция на введение или выброс инсулина развивается быстро. В физиологическом плане гормоны глюкагон и инсулин не являются антагонистами. Глюкагон обеспечивает перевод резервного гликогена в глюкозу, а инсулин обеспечивает поступление этой глюкозы из крови в клетки перефирических тканей и ее последующую утилизацию в клетках.
Почему их нельзя считать антагонистами?
В суммарном плане влияние на концентрацию глюкозы их можно назвать антагонистами один гипергликемический, другой гипогликемический, однако в физиологическом плане их нельзя назвать антагонистами, поскольку один за счет распада гликогена увеличивает концентрацию глюкозы, а второй (инсулин) обеспечивает проникновение этой глюкозы и ее последующую утилизацию.
Синтез гликозаминокликанов стимулируется тестостероном и соматотропным гормоном, причем под действием соматотропина в печени синтезируется пептид (инсулиноподобный фактор роста). Именно пептид является истинным стимулятором синтеза гетерополисахаридов межклеточного вещества соединительной ткани. Синтез гликозаминогликанов тормозят глюкокортикоиды. Замечено, что в местах инъекции кортизола количество межклеточного вещества в соединительной ткани уменьшается.
Изменения в крови и появление в моче.
Повышение показателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени.
Снижение показателя имеет место при гиперин-сулинизме, недостаточности функции надпочечников, гипопитуитаризме при печеночной недостаточности (иногда), функциональной гипогликемии и при приеме гипогликемических препаратов.
В моче
Глюкоза в нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качест венными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиологических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостроиды. Патологическая глюкозурия чаще всего бывает при сахарном диабе те, реже при тиреотоксикозе, синдроме Иценко — Кушинга и т. д.
4. Ацетоновые тела, их происхождение и биологическая роль, содержание в крови. Ацетонемия и кетонурия. Причины их возникновения.
Содержание - до 30 мг/л.
Мобилизация триглицеридов жировой ткани и проблемы транспорта высших жирных кислот.
Постадсорбционном периоде (когда между приемами пищи длительный интервал) идет мобилизация энергетических ресурсов организма в том числе мобилизация триглицеридов жировой ткани.
Образующиеся в ходе мобилизации высшие жирные кислоты через мембрану липоцитов поступают в кровяное русло и в комплексе с альбуминами переносятся током крови в различные органы и ткани.
Там жирные кислоты проникают через наружную клеточную мембрану внутрь клеток и связываются со специальным так называемым Z-белком. В комплексе сэтимвнутриклеточным переносчиком жирные кислоты перемещаются в цитозоле к месту их использования.
Концентрация неэтерифицированных или иначе свободных жирных кислот в плазме крови натощак составляет величину 0,56-0,58 млмоль/л.
Жирные кислоты очень быстро обмениваются в крови, время их полужизни в русле крови составляет около 4 мин. За сутки с током крови переноситься примерно 150 гр свободных жирных кислот. Эта величина превышает величину суточного поступления липидов в организме. Это свидетельствует о том, что значительная часть транспортируемых кровью высших жирных кислот является продуктом их биосинтеза из углеводов или углеродного скелета аминокислот.
В условиях длительно интенсивной работы требующей больших энергозатрат жирные кислоты, поступающие из жировых депо становятся основным видом энергетического топлива. Значение их как энергетического топлива еще более возрастает при недостатке глюкозы в органах и тканях, что характерно для сахарного диабета или голодания. Однако на пути эффективного использования высших жирных кислот клетками встает так называемый диффузионный барьер.
Что это за барьер?
Суть этого явления заключается в том, что высшие жирные кислоты на своем пути из кровяного русла в клетки должны пройти через гидрофильную фазу межклеточной среды. Но они нерастворимы в воде и поэтому скорость движения через межклеточную среду крайне ограничена. Выходом из положения является преобразование жирных кислот в печени в соединения с небольшой молекулярной массой которые растворимы в воде.
Это такие соединения как ацетоуксусные и b-гидроксимасляные кислоты. Эти соединения из печени опять же поступают в кровь, а затем идут в клетки тканей, но для этих молекул диффузионного барьера не существует, поэтому они служат эффективным энергетическим топливом. Эти соединения получили название - ацетоновые тела. К ацетоновым телам относится и сам ацетон (диметилкетон). В то же время в гепатоциты высшие жирные кислоты поступают минуя диффузионный барьер потому, что гпатоциты в печеночных синусах непосредственно контактируют с кровью.
Биосинтез и распад ацетоновых тел.
Жирные кислоты поступающие в гепатоциты, активируются и подвергаются b-окислению с образованием ацетилКоА. Именно этот ацетилКоА используется для синтеза ацетоновых тел, согласно схеме.
В ходе первой реакции (в первую реакцию вступают 2 молекулы ацетилКоА, фермент ацетилКоА-ацетилтран сфера за = тиолаза) образуется 4-х углеродная молекула ацетоацетилКоА. Эти соединения макроэргические поэтому в этом синтезе не принимает участие АТФ.
В ходе следующей реакции (фермент b-гидроксиb-метилглю коилК оАсинтетаза) (впоследующемвыувиди те, что первые этапы биосинтеза ацетоновых тел и холестерина абсолютно равнозначны. Это одна из ключевых реакций синтеза ацетоновых тел) используется еще одна молекула ацетилКоА, вода. Образуется 6-и углеродная молекула - b-гидроксиb-метилглю тарил КоА.
Последняя реакция - лиазная (катализирует фермент ГМГ-лиаза), происходит отщепление ацетилКоА и образование 4-х углеродной молекулы - ацетоацетата.
Как образуются два других соединения относящихся к группе ацетоновых тел?
Из ацетоуксусной кислоты спонтанно, чаще всего, или иногда за счет декарбоксилазы происходит отщепление карбоксильной группы в виде углекислого газа и образуется ацетон.
Ацетоуксусная кислота восстанавливается в ходе реакции катализируемой ферментом b-гидроксибутератдег идрог иназой с использованием НАД+Н+, в итоге образуется b-гидроксимасляная кислота. Это третийсоставнойэлеме нт ацетоновых тел.
Образовавшиеся ацетоновые тела поступают из гепатоцитов в кровь и разносятся к клеткам. Процесс синтеза ацетоновых тел идет постоянно и ацетоновые тела всегда присутствуют в крови в концентрации 30мг/л. При голодании их содержание может увеличиваться до 400-500 мг/л. Еще больше концентрация при сахарном диабете в тяжелой форме до 3000-4000 мг/л.
Ацетоновые тела в норме хорошо утилизируются клетками периферических тканей, в особенности это касается скелетных мышц и миокарда. Скелетные мышцы и миокард значительную часть нужной им энергии получают за счет окисления ацетоновых тел. Только нервные клетки в обычных условиях не утилизируют ацетоновые тела, однако при голодании даже головной мозг 50-75% соей потребности в энергии удовлетворяет за счет окисления ацетоновых тел.
Ацетоацетат, поступающий в клетки различных тканей, прежде всего подвергается активации помощью одного из двух механизмов.
Ацетоацетат с участием фермента тиокиназы, за счет энергии АТФ превращается в ацетоацетилКоА.
Второй путь, является превалирующим в активации, это за счет фермента тиофоразы. Реакция, в которой принимают участие сукцениКоА и ацетоацетат, приводит к образованию ацетоацетилКоА и образование сукцината, который далее окисляется в цикле Кребса.
Образующийся ацетоацетилКоА далее дает 2 молекулы ацетилКоА (принимает участие НSКоА, это тиолазная реакция)
АцетилКоА поступает в цикл Кребса, где ацетильные остатки окисляются до углекислого газа и воды.
Биологическая роль
Ацетоновые тела по значимости - 3 тип топливной энергии.
В гепатоцитах нет фермента тиофоразы, поэтому образовавшийся в гепатоцитах ацетоацетат не активируется и не окисляется. Таким образом печень экспортирует ацетоацетат, другими словами синтезирует этот вид топлива для других клеток.
b-гидроксибутерат окисляется путем дегидрироания в ацетоацетат, дальше ацетоацетат в ацетилКоА.
Что касается ацетона, возможно 2 варианта окисления. Дело в том, что ацетон очень летуч поэтому большое количество выделяется вместе с выдыхаемым воздухом, кроме того ацетон выделяется с водой.
1 путь: Ацетон расщепляется до ацетильного и формильного остатка
2 путь: Через пропандиол он превращается в пируват.
Ацетоновые тела накапливаясь в крови и тканях оказывают ингибирующие действие на липолиз, в особенности это касается расщепление триглицеридов в липоцитах. Дело в том, что избыточное накопление в крови ацетоновых тел приводит к развитию ацидоза. Снижение уровня липолиза в клетках жировой ткани приводит к уменьшению притока жирных кислот в гепатоциты, к снижению скорости образования ацетоновых тел и следовательно к снижению содержания в крови.
Кетонемия и кетонурия.
В следствии недостаточности инсулина, что характерно для сахарного диабета, а так же при голодании, имеется относительная избыточность глюкагона (гормон панкреатической железы). По этой причине печень постоянно функционирует в режиме, который характерен для здоровых людей в постадсорбционном периоде. В это период в печени интенсивно окисляются жирные кислоты и интенсивно продуцируются кетоновые тела. Однако скорость синтеза кетоновых тел может превышать даже увеличенное в этих условиях потребление тканями. Развивается кетонемия. В норме кетоновых тел в крови меньше 2мг/дцл. При голодании может достигать до 30 а, при диабете до 350. При такой кетонемии развивается кетонурия. С мочой может выделяться до 5 гр кетоновых тел в сутки.
Кетоновые тела являются кислотами и поэтому снижают буферную емкость крови, а при высоких концентрациях снижают и рН крови. Возникает кетоацидоз. В норме рН крови = 7,4. При котонемии рН крови может уменьшаться до 7, что приводит к резкому нарушению функций головного мозга вплоть до потери сознания и развития тяжелейшей комы. Необходима интенсивная терапия.
5. Мочевина. Значение ее образования в организме. Содержание мочевины в крови и суточное выделение с мочой. Причины изменения суточного количества мочевины в моче.
P/S мочевая кислота - конечный продукт обмена пуриновых оснований, входящих в состав нуклеопротеидов. В сыворотке - 0,22-0,46 мМ/л. Гиперурекимия - повышение мочевой кислоты в крови (главный симптом подагры).
Содержание в крови и суточное выведение
В крови - 3,3 - 8,3 мМ/л
Суточное выведение - 20 - 35 гр.
Синтез мочевины.
Аммиак тем или иным путем поступивший в печень или образовавшийся в гепатоцитах вступает в цикл мочевинообразования открытый в 1932 г.
Синтез мочевины начинается с образования в митохондриях печени карбомоилфосфата.
Вторая реакция мочевинообразования протекает так же в митохондриях (трансфераза обеспечивает перенос остатка карбомонила на молекулу арнитина-монокарбоно вая кислота содержащая 5 углеродных атомов). Образуется аминокислота - цитрулин.
Дальнейшие реакции мочевинообразования протекают в цитозоле. В следующей реакции участвует цитрулин и аспартат (фермент - аргининосукцинатсинт етаза ). В этой реакции участвуют цитрулин и аспартат. Реакция эгнергозависимая. В ходе реакции происходит расщепление АТФ до АМФ и пирофосфата и образуется аргининоянтарная кислота или аргининосукцинат.
От куда клетки находят аспартат? Аспартат образуется в ходе реакций трансаминирования из оксалоацетата - промежуточного продукта цикла Кребса, который подвергается реакции взаимодействия с глутоматом и образуется аспартат.
Дальше в ходе следующего процесса происходит лиазная реакция (лиазное расщепление - расщепление не гидролитическим путем) (фермент- аргининосукцинатлиаз а). Происходит расщепление и в итоге образуется аминокислота аргинин и отщепляется остаток в виде фумаровой кислоты.
Фумаровая кислота - промежуточный продукт цикла Кребса, присоединяя воду превращается в малат, малат дегидрируется и превращается в оксалоацетат, а оксалоацетат за счет трансаминирования может превращаться в аспартат, который поставляет один атом азота.
Последняя реакция мочевинообразования катализируемая ферментом обладающим абсолютной специфичностью аргиниза. Происходит расщепление аргинина, образуется полный амид угольной кислоты получивший название мочевина и регенирирует орнитин. Отсюда название цикла - орнитиновый цикл мочевинообразования.
В ходе следующей реакции арнитин вновь вступая в реакцию взаимодействия с карбомоилфосфататом может давать цитрулин и дальнейшее повторение реакций приводит к увеличению синтезированной мочевины.
Необратимой реакцией в этом процессе является реакция с участием аргининосукцинатсинт етазы - термодинамический контроль направления процесса в целом.
Суммарное уравнение мочевинообразования.
СО2 + NH3 + аспартат + 3АТФ + 2Н2О ® мочевина + фумарат + 2AДФ + АМФ + 4Н3РО4
аспартат СО2 NH3
H2N - C - NH2
çç
O
Синтез идет из углекислого газа, аммиака,
Источником углерода в мочевине является несомненно углекислый газ. Один атом азот происходит из аммиака, а второй атом азота по происхождению из аспартата. На синтез 1 молекулы мочевины клетка затрачивает 4 макроэргических эквивалента. Причем азот мочевины составляет примерно 50% всего небелкового азота крови.
Необходимо отметить, что количество мочевины выводимое с мочой зависит от нескольких факторов.
n Снижение содержания мочевины наблюдается при снижении белка в пище.
n Количество выводимой мочевины будет так же уменьшаться при патологии почек, которое сопровождается задержкой азотистых шлаков в организме.
n Выведение мочевины может снижаться при тяжелой патологии печени как следствие нарушения синтеза мочевины.
Причины изменения суточного количества в моче и крови.
Мочевина, конечный продукт метаболизма белков, экскретируется почками. Концентрация мочевины в клубочковом фильтрате такая же, как и в плазме.
Канальцевая реабсорбция мочевины изменяется обратно пропорционально скорости потока мочи. Поэтому экскреция мочевины является менее информативным показателем клубочковой фильтрации, чем экскреция креатинина, который не реабсорбируется.
Существует прямая связь между азотом мочевины крови и потреблением белка и обратная связь между скоростью экскреции мочевины и азотом мочевины крови.
Повышение показателя имеет место:
а) при почечной недостаточности — остром и хроническом нефрите, остром канальцевом некрозе, при обструкциии мочевыводящих путей;
б) при усилении метаболизма азота на фоне уменьшения почечного кровотока или нарушения функции почек, дегидратации (любой этиологии), а также при кровотечении из верхних отделов желудочно-кишечного тракта (комбинация повышенного всасывания белков крови и уменьшенного почечного кровотока);
в) при уменьшении почечного кровотока — при шоке, недостаточности функции надпочечников и иногда при сердечной недостаточности с явлениями застоя.
Снижение показателя имеет место при печеночной недостаточности, нефрозе (не осложненном почечной недостаточностью), при кахексии.
6. Креатин и креатинин, их содержание в крови. Биологическая роль креатина. Суточное выведение креатинина с мочой. Причины появления креатина в моче.
Содержание в крови.
Креатин в сыворотке - у мужчин - 15 - 45 мкМ/л, у женщин - 45-76 мкМ/л.
Креатинин - 53-106 мкМ/л
Биологическая роль креатина.
Креатин — важный компонент мышц, мозга. В форме креатин-фосфата он служит высокоэнергетическим фосфатом. Это единственный резервный макроэрг.
Содержание в моче - у мужчин - 0 - 50 мг/кг
у женщин - 0 - 100 мг/кг
выведение 0-150 мг в сутки
Уровень экскреции креатина повышается при усилении катаболизма и при мышечной дистрофии.
Повышение показателей имеет место при мышечных дистрофиях (прогрессирующая мышечная дистрофия, атрофическая миотония, миастения гравис), мышечной гипотрофии (острый полиомиелит, боковой амиотрофический склероз, миозит, проявляющийся в гипотрофии мышц), при голодании и кахексии, гипертириозе и лихорадочных состояниях.
Синтез креатина.
В синтезе креатина участвуют два органа - почки и печень.
В почках образуется гуанидинуксусная кислота.
Далее гуанидинацетат с кровотоком транспортируется в печень, где в реакции трансметилирования превращается в креатин.
Креатинфосфат образуется из креатина и АТФ при действии кретинкиназы. Креатинкиназа специфична для сердечной мышцы и поэтому ее появление в крови или увеличение ее активности свидетельствует о некрозе.
Синтез креатинина.
Креатинин образуется в результате неферментативнгого дефосфорилирования креатинфосфата.
Содержание в моче - мужчины - 25 мг/кг
женщины - 21 мг/кг
выведение 1-2 гр в сутки
7. Аммиак. Пути его образования и обезвреживания в организме. Суточное количество аммиака в моче. Причины изменения содержания аммиака в моче.
Образование аммиака.
1. За счет дезаминирования аминокислот
2. При распаде пуриновых и пиримидиновых нуклеотидов.
3. Инактивация биогенных аминов с участием ферментов моноаминооксидаз.
4. В кишечнике а качестве продукта жизнедеятельности микробной микрофлоры (при гниении белков в кишечнике
Дезаминирование - процесс отщепления от аминокислот аминогрупп с образованием свободного аммиака. Дезаминирование в организме человека протекает в 2 вариантах:
1 В виде прямого дезаминирования
2 В виде непрямого дезаминирования (трансдезаминировани е).
Прямое дезаминирование аминокислот в свою очередь на разных уровнях организации живых объектов встречается в 4 основных вариантах:
а) окислительное дезаминирование
б) внутримолекулярное дезаминирование
в) гидролитическое дезаминирование
г) восстановительное дезаминирование
В клетках человека работают только 2 из перечисленных:окисли тельн оеивнутримолекулярно е дезаминирование.
Глютоматдегидрогиназ а является регуляторнымферменто м,т.е .аллостерическим.Ееа ктивн ость угнетается по аллостерическому механизму высокими концентрациями АТФ в клетке и наоборот повышаеться при уменьшении концентрации и увеличении концентрации АДФ. За счет работы этого регуляторного механизма скорость процесса трансдезаминирования контролируется энергетическим статусом клетки.
Если энергии в клетки недостаточно, скорость процесса возрастает. При хорошем
обеспечении клетки энергией расщепление аминокислот тормозиться.
Механизм безопасного транспорта аммиака.
Аммиак, образующийся в клетках различных органов и тканей в свободном состоянии не может переносится кровью к печени или к почкам в виду его высокой токсичности. Он транспортируется в эти органы в связанной форме в виде нескольких соединений, но преимущественно в виде амидов дикарбоновых кислот, а именно глютамина и аспаргина. Наибольшую роль в системе безопасного транспорта аммиака играет глютамин. Он образуется в клетках периферических органов и тканей из аммиака и глутомата в энергозависимой реакции катализируемой ферментом глутаминсинтетазой. В виде глутамина аммиак переносится в печень или в почки где расщепляется до аммиака и глутомата в реакции катализируемой глутаминазой.
Требуется энергия АТФ. Концентрация глутомина в крови на несколько порядков выше чем других аминокислот. Вторая реакция
Ферменты мочевинообразования в полном объеме имеются только в печени.
Основным органом где происходит обезвреживание аммиака является несомненно печень. В ее гепатоцитах до 90% образовавшегося аммиака превращается в мочевину, которая с током крови поступает из печени в почки и затем выводиться с мочой. В норме в сутки с мочой выводиться 20-35 гр мочевины. Небольшая часть образующегося в организме аммиака (примерно 1гр в сутки) выводится почками с мочой в виде аммонийных солей. Аммиак образуется везде.
Причины изменения содержания аммиака в моче.
Аммиак выводится с мочой в виде аммонийных солей. При ацидозе их количество в моче увеличивается, а при алколозе снижается. Количество аммонийных солей в моче может быть снижено при нарушениии в почках процессов образования аммиака из глутамина.
Причины изменения содержания аммиака в крови. В плазме (7,1-21,4 мкМ/л)
Поступающий в воротную систему или в общий кровоток аммиак быстро превращается в печени в мочевину. Печеночная недостаточность может приводить к повышению аммиака в крови, особенно если она сопровождается высоким потреблением белка или кишечным кровотечением.
Аммиак повышается в крови при печеночной недостаточности или при шунтировании кровотока в печени вследствие портакавального анастомоза, особенно на фоне высокого содержания белка в пище или при кишечном кровотечении.
8. Остаточный азот крови. Его количественное содержание. Общий азот мочи. Причины изменения содержания остаточного азота в крови и общего азота в моче.
Остаточный азот - небелковый азот крови, т.е. остающийся в фильтрате после осаждения белков. В крови - 14,3-28,6 мМ/л
Мочевина составляет 50% остаточного азота
Аминокислоты: Солдержание глутамина, аланина, аспаргина больше чем других аминокислот, потому что именно в таком виде аммиак транспортируется из перефирических тканей в места его окончательного обезвреживания. Берутся за счет распада тканевых белков....из продуктов распада глюкозы или глицерина, причем пул поддерживается за счет 3 основных источников
Мочевая кислота (3-оксипурин) - конечный продукт обмена пуриновых нуклеотидов. Пуриновое ядро которое способно образовывать соли в виде уратов - постоянный компонент мочевых камней.
Креатин - синтезируется из трех аминокислот. Креатинфосфат - резервный макроэрг, единственный резервный макроэрг, имеет огромную значимость в сокращении прежде всего сердечной мышцы. Креатинкиназа специфична для сердечной мышцы и поэтому ее появление в крови, увеличение активности свидетельствует о некрозе.
Креатинин - образуется после передачи фосфатной группы от креатинфосфата на АДФ.
Аммиак - за счет дезаминирования аминокислот, небольшое количество образуется при распаде пуриновых и пиримидиновых нуклеотидов, инактивация биогенных аминов с участием ферментов МАО (моноаминооксидаз).
Индикан - калиевая соль индоксил серной кислоты. Структуру знать! Индольное ядро которое входит в состав триптофана. Обезвреживание в печени. Вначале окисляется до индоксила, а затем взаимодействуя с серной кислотой при участии соответствующей трансфиразы содержащей фосфоаденозинфосфосу льфат (активная форма серной кислоты) образуется индоксилсерная и в виде калиевой соли выводится из организма с мочей.
Полипептиды (гормоны, вазоактивные пептиды, карнозин, АКТГ).
Билирубин - конечный продукт распада гемоглобина.
Нуклеотиды, нуклеозиды, витамины
9. Желчные пигменты, их происхождение. Содержание билирубина в крови. Причины изменения содержания билирубина в крови и его появление в моче. Уробилин, причины изменения его содержания в моче.
Распад гемоглобина идет в ретикуло-эндотелиаль ной системе.
Оксидаза, образуется разрыв одного метинильного мостика и структура становится неустойчивой (вердоглобин - зеленый пигмент) и поэтому далее идет спонтанное разрушение, потеря глобина и потеря железа с образованием первого желчного пигмента - биливердин.
Биливердин далее восстанавливается в билирубин за счет редуктазы. Билирубин нерастворим в воде поэтому переносит его к месту окончательного обезвреживания (печень) абсорбируясь на альбуминах. В крови прежде всего имеется билирубин абсорбированный на белках.
Пожелтение человека после приема какого либо препарата, развивается в результате низкой активности глюкоза-6-фосфатдеги дроги наза. Пентозный шунт нарабатывает восстановленный НАДФ, который необходим для регуляции перикисного окисления липидов мембраны.
Далее происходит перенос через мембраны гепатоцитов происходит детоксикация билирубина с участием фермента содержащую n-глюкуроновую кислоту,т.е.соответс твующ ая трансфераза переносит 1 или 2 остатка глюкуроновой кислоты на билирубин и в результате образуется моноглюконидбилируби на или диглюконидбилирубина т.е. коньюгированное соединение за счет спиртовой группы.
В кишечнике глюкуроновая кислота отщепляется под действием бактериальных ферментов и образовавшийся вновь билирубин восстанавливается по некоторым двойным связям, образуя 2 группы продуктов: уробилиногены и стеркобилиногены.
Основная часть выводится с калом, а остальная часть попадает в кровь и затем попадает в желчь, а частично выводится почками.
Под действием света превращаются в уробилины и стеркобилины.
Часть билирубина попадает в кровь, и там содержится в 2 видах:
1. Билирубин в виде диглюкуронида т.е. обезвреженный, малотоксичный 25%
2. Абсорбированный на альбуминах 75%
Прямой билирубин (диглюкуронид билирубина) дает прямую реакцию сдиазореактивом Эрлиха без предварительной обработки, без осаждения белка.
Непрямой (свободный) вначале надо осадить, а затем он дает реакцию с диазореактивом Эрлиха.
Прямой билирубин проходит через почечный фильтр, непрямой не проходит. Увеличение концентрации билирубина в крови - билирубинемия и клинически сопровождается развитием желтухи.
три типа желтух
1. Паринхимотозная желтуха (вирусный гепатит) которая развивается при болезни Боткина. В крови наблюдается повышение концентрации прямого и непрямого билирубина, в моче будет наблюдаться повышение билирубина.
2. Механическая или абтурационная. Абтурация желчного протока опухолью или камнями. Характерно застой желчи и происходит выброс и повышается содержание прямого билирубина, моча цвета пива. Фекалий цвета белой глины.
3. Гемолитическая . Массивный гемолиз. В крови содержание непрямого билирубина повышается, желчные пигменты не будут появляться в моче.
Содержание билирубина в крови.
Билирубин общий 1,7-20,5 мкМ/л
прямой 0,9 - 4,5 мкМ/л
непрямой 1,7 - 17,0 мкМ/л
Причина изменения содержания билирубина в крови.
При распаде гемоглобина образуется билирубин. В печени он связывается с глюкуронатом и в виде диглюкуронида экскретируется с желчью. Билирубин накапливается в плазме при печеночной недостаточности, закупорке желчевыводящих путей, при повышенном распаде гемоглобина. Изменение концентрации может быть связано с дефектом ферментных систем, участвующих в метаболизме билирубина (например, при отсутствии глюкуронил-трансфера зы).
Прямой и непрямой билирубин сыворотки повышены при остром и хроническом гепатите, закупорке желчевыводящих путей (на уровне желчных протоков или
общего желчного протока), при токсической реакции на многие лекарственные препараты, химические вещества, токсины, при синдромах Дабин — Джонса и Ротора.
Непрямой билирубин сыворотки повышен при гемолитических анемиях, других гемолитических реакциях, при отсутствии или дефиците глюкуронилт-рансфера зы (например, при синдромах Жильбера и Криглера — Наджара).
Прямой и общий билирубин могут быть значительно повышены у здоровых людей после 24—48 ч голодания (иногда даже после 12 ч), при длительной низкокалорийной диете.
Причины появления в моче.
Билирубин. В норме моча содержит минимальные количества билирубина, которые не могут быть обнаружены обычными качественными пробами. Повышенное выделение билирубина, при котором обычные качественные пробы на билирубин в моче становятся положительными, называется билирубинурией. Она встречается при закупорке желчного протока и заболевании паренхимы печени.
Выделение билирубина в мочу особенно сильно выражено при обтурационных желтухах. При застое желчи переполненные желчью канальцы травмируются и пропускают билирубин в кровяные капилляры. Если поражена паренхима печени, билирубин проникает через разрушенные печеночные клетки в кровь. Кстати, непрямой билирубин не может пройти через почечный фильтр. Это становится возможным при значительных поражениях почек.
Уробилин. Причины изменения содержания в моче.
Уробилин (уробилиноген) — полное отсутствие уробилина указывает на обтурационную желтуху. Появление уробилина в больших количествах может быть при гемолитических состояниях (гемолитическая желтуха, гемоглобинурия, рассасывание больших кровоизлияний, обширные инфаркты миокарда, малярия, скарлатина) при заболеваниях печени (гепатиты, цирроз печени, отравления), при кишечных заболеваниях, при токсических заболеваниях печени.
10 Минеральные компонентыкрови:Cl,С а,Р,N a, их биологическаяроль, содержание в крови. Причины изменения содержания.
Кальций.
1. Соли кальция образуют минеральный компонент костей
2. Ионы кальция являются кофакторами многих ферментов и неферментативных белков.
3. Ионы кальция во взаимодействии с белком кальмодулином служат посредником в передаче регуляторных сигналов (подобно цАМФ).
Кальций сыворотки
Норма: общий — 2,1-2,6 ммоль/л СИ (9-12 мг%), ионизированный — 1,05—1,3 ммоль/л СИ (4,2— 5,2 мг%). На содержание кальция в плазме и других жидкостях организма влияют питание, состояние эндокринной системы, почек, желудочно-кишечного тракта. Для интерпретации результатов необходимо также определять концентрацию альбумина в плазме, так как часть кальция находится в связанном с белками плазмы состоянии.
Повышение показателя имеет место при гиперпаратиреозе, секреции паратиреоидподобного гормона злокачественными опухолями, гипервитаминозе D, молочно-щелочном синдроме, остеолитических процессах, например, при множественной миеломе, метастазах опухоли в кости, болезни Паже, болезни Бека, при иммобилизации и семейной гипокальциурии. Иногда повышение наблюдается при гипертиреозе и при приеме лекарственных препаратов из группы тиазидов.
Снижение показателя имеет место при гипопара-тиреозе, дефиците витамина D (рахит, остеомаляция), почечной недостаточности, гипопротеинемии, синдроме малабсорбции (илеите, недостаточности поджелудочной железы), тяжелом панкреатите с панкреонекрозом и при псевдогипопаратиреоз е.
Хлориды сыворотки или плазмы
Норма: 95-110 ммоль/л СИ (96-106 мэкв/л). Хлорид — важный неорганический анион внеклеточной жидкости. Он играет существенную роль в поддержании кислотно-щелочного равновесия, хотя сам не проявляет буферного действия. При потере хлоридов в виде НС1 или Н4С1 развивается алкалоз; при чрезмерном потреблении хлоридов — ацидоз. Хлориды (с натрием) играют важную роль в регуляции осмолярности жидкостей организма.
Повышение показателя имеет место при почечной недостаточности (когда потребление хлоридов превышает экскрецию), нефрозе (иногда), почечном ка-нальцевом ацидозе, гиперпаратиреозе (иногда), уретросигмоидальном анастомозе (реабсорбция из мочи в кишечнике), дегидратации (дефиците воды), при передозировке солевых растворов.
Снижение показателя имеет место при желудочно-кишечных заболеваниях, сопровождающихся потерей содержимого желудка или печени (рвота, понос, нарушение желудочно-кишечного всасывания), почечной недостаточности (с потерей солей), передозировке мочегонных, хроническом дыхательном ацидозе (эмфизема), диабетическом ацидозе, повышенной потливости, адреналовой недостаточности (теряется аС1), гиперадренокортицизм е (хроническая потеря К+), метаболическом алкалозе (потребление аНСОЗ, дефицит К+).
Фосфор неорганический сыворотки
Норма: дети — 1,3-2,3 ммоль/л СИ (4-7 мг%), взрослые — 1-1,5 ммоль/л СИ (3-4,5 мг%).
На концентрацию неорганического фосфора в циркулирующей плазме влияют функция паращито-видных желез, витамин D, всасывание вкишиечнике,функция почек, метаболизм костной ткани и питание.
Повышение показателя имеет место при почечной недостаточности, гипопаратиреозе и гипервитаминозе.
Снижение показателя имеет место при гиперпа-ратиреозе, гиповитаминозе D(рахит, остеомаляция), синдроме малабсорбции (стеаторея), приеме антацидов, которые связывают фосфаты в кишечнике, голодании или кахексии, хроническом алкоголизме (особенно при поражении печени), передозировке растворов, бедных фосфатами, введении углеводов (особенно внутривенно), нарушении функции почечных канальцев, использовании мочегонных группы тиазида, нарушениях кислотно-щелочного равновесия, диабетическом кетоацидозе (особенно при выздоровлении) и наследственной гипофаосфатемии; ногда при беременности и гипотиреозе.
Натрий сыворотки или плазмы
Норма: 132-157 ммоль/л. В эритроцитах 12-28 мМ/л. Вместе с ассоциированными с ним анионами он является основным осмотически активным компонентом плазмы, существенно влияющим на распределение воды в организме. Перемещение натрия в клетке или потеря натрия организмом приводит к снижению объема внеклеточной жидкости, влияя на кровообращение, функцию почек и нервной системы.
Повышение показателя имеет место при дегидратации (дефицит воды), травмах или заболеваниях нервной системы, гиперодренокортицизм е с гиперальдостеронизмо м или при избытке кортикостероидов.
Снижение показателя имеет место при недостаточности фукции надпочечников, почечной недостаточности, особенно в сочетании с неадекватным потреблением натрия; при почечном канальцевом ацидозе; при физиологическом ответе на травму или ожог (перемещение натрия в клетке); при потерях через желудочно-кишечный тракт или при острой и хронической диарее, при кишечной непроходимости или фистуле; при необычной потливости с неадекватной компенсацией утраты натрия. У ряда пациентов с отеками, связанными с сердечными или почечными
заболеваниями, концентрация натрия в сыворотке низкая, хотя общее содержание натрия в организме выше, чем в норме. К этой парадоксальной ситуации приводят задержка воды (повышение антидиуретического гормона, АДГ) и аномальное перераспределение натрия между внутриклеточной и внеклеточной жидкостью. Гипергликемия приводит иногда к перемещению жидкости из внутриклеточного во внеклеточное пространство, вызывая гипонатриемию из-за разведения. Артефакт: при изменении на пламенном фотометре натрия сыворотки или плазмы оказывается заниженным при наличии гиперлипидемии или гиперглобулинемии; при этих нарушениях объем, занятый обычно водой, занят другими веществами; в сыворотке и плазме будут, следовательно, «занижены» показатели воды и электролитов. При гипергликемии концентрация натрия в сыворотке будет снижаться на 1,6 ммоль/л на каждые 100 мг% глюкозы (при ее общей концентрации, превышающей 200 мг%) из-за перемещения воды во внеклеточное пространство.
11. Ферменты крови. Причины изменения активности ферментов в крови. Энзимодиагностика.
Ферменты крови.
Кровь содержит множество ферментов, но их количество бывает настолько минимально, что их не удается обнаружить в качестве отдельной электрофоретической фракции. По происхождению ферменты крови принято разделять на три группы:
1. Собственные ферменты крови (секреторные). Ферменты, выполняющие определенные функции в крови. Ферменты свертывающей и антисвертывающей системы крови. Фермент липопротеидлипаза (атакует ЛП), триглицеридлипаза, лицитинхолистеролаци лтран сфераза (ЛХАТ) катализирует реакцию этерефикации холистерола
2. Ферменты, поступающие в кровь из тканей в результате гибели клеток или утечки через мембрану. Индикаторные ферменты.
3. Ферменты, поступающие в кровь из выводных протоков различных желез. Экскреторные ферменты. Амилаза и липаза (из поджелудочной железы), щелочная фосфотаза (из печени).
Для клинической практики имеют значение гиперферментемии или гипоферментемии. Чаще встречаются первые.
Вторые встречаются редко, обычно это или результат нарушения поступления секреторных ферментов (при церрозах часто) или результат интоксикации (например снижение активности холиностеразы при поражениях фосфорорганическими средствами). Это может быть результат наследственной патологии, касается это отсутствие некоторых протеиназ системы свертывания крови при гемофилиях.
Выход ферментов в кровь.
Существует несколько факторов определяющих скорость выхода ферментов из поврежденных тканей в кровь:
1. Концентрационный градиент ткань-кровь. Чем выше тем быстрее ферменты уходят в кровь ферменты из поврежденных клеток. Пример: в печени лактатдегидрогиназа (ЛДГ) концентрационный градиент по отношению с кровью 3000:1. Для АсАТ и АлАТ - 10.000:1.
2. Относительная молекулярная масса. Ферменты с меньшей молекулярной массой быстрее выходят из клеток в кровь.
3. Внутриклеточная локализация ферментов. Цитоплазматические ферменты в крови появляются раньше, чем внутримитохондриальн ые.
Как удаляются ферменты из русла крови?
1. Часть ферментов может выделяться с мочой если их молекулярная масса невелика (амилаза, уропепсин).
2. Основной путь - разрушение в кровяном русле протеиназами.
3. Поглощение клетками ретикулоэндотелиальн ой системы и последующее разрушение.
В целом активность ферментов в крови и определяется соотношением процессов
1. Увеличивается утечка через поврежденные мембраны.
2. Некроз ткани
3. Повышенный синтез
4. Высокая активность
5. Старение и отмерание клеток
Уменьшение
1. Инактивация
2. Экскреция
3. Поглощение клетками ретикулоэндотелиальн ой системы.
На регистрируемую величину активности влияет период полужизни ферментов в крови. Оказывается, для каждого фермента он индивидуален. АсАТ период полужизни составляет 17±5 часов. АлАТ - 47±10 часов. Холиностераза - 10 суток, липаза 3-6 часов.
Энзимодиагностика.
Определение активности ферментов с целью диагностики и контроля за проводимым лечением.
Для энзимодиагностики используются в настоящее время определение активности более 50 ферментов. Наиболее известны - ЛДГ, альдолаза, трансаминаза, креатинкиназа, амилаза, кислая и щелочная фосфотаза, глутоматдегидрогиназ а. Определяют активность ферментов всех групп (секреторных, индикаторных, экскреторных), но наиболее значение имеет определение органоспецифичных ферментов.
Гистидаза (обмен ам.к), уроканиназа.
Используется так же определение активности изоферментов. Изофермент ЛДГ (для сердца ЛДГ1 и ЛДГ2, для печени ЛДГ4 и ЛДГ5) и изофермент креатинкиназы (ММ, МВ)- эти изоферменты в миокарде ВВ в мозге и в мышце скелетной МН.
Диагностическая ценность определение активности ферментов повышается если в крови определяется активность не одного, а нескольких ферментов, т.е. исследуется ферментный спектр крови.
Огромное значение имеет определение активности ферментов при диагностики наследственных заболеваний.
12 Липиды крови: состав, содержание в крови. Липопротеиды крови. Изменение содержания липидов крови при патологии.
Содержание в крови.
Общие липиды - 3,5-8,5 г/л
триглицериды - 0,6-2,3 мМ/л
холистерол - 3,9-6,8 мМ/л
фосфолипиды - 2,0-4,7 мМ/л
свободных жирных кислот в плазме крови натощак составляет величину 0,56-0,58 млмоль/л.
ХМ меньше 1гр/л
ЛПОНП - 0,8-1,5 г/л
ЛПНП - 3,0-4,5 г/л
ЛПВП - у мужчин - 1,2-4,2 г/л
у женщин - 2,5-6,5 г/л
Во внешней оболочке или так называемый внешний мономолекулярный слой, липопротеидные частицы образуют: белки (их называют апобелки или апопротеины), свободный холистерол и фосфолипиды. Причем гидрофильные участки этих молекул обращены кнаружи и контактируют с водой, гидрофобные участки располагаются кнутри т.е. в сторону ядра. Ядра гидрофобных липопротеидных частиц образуют прежде всего триглицериды, далее этерефицированный холистерол, кроме того сюда могут включаться жирорастворимые витамины или другие гидрофобные молекулы.
Существует несколько классов липопротеидных частиц которые отличаются друг от друга по
а) составу,
б) плотности и
в) электролитической подвижности
Их подразделяют на:
1). Хиломикроны (ХМ)
2). Липопротеиды очень низкой плотности
3). Липопротеиды низкой плотности
4). Липопротеиды высокой плотности
Ведущую роль в транспорте экзогенных липидов играют хиломикроны.
Метаболизм ХМ.
Хиломикроны в связи с большими размерами поступают в лимфатическую сеть, а затем через грудной лимфатический проток в кровь и разносятся к различным клеткам и тканям. На поверхности эндотелия капилляров различных тканей имеется фермент - липопротеидлипаза (ЛП-липаза). Он закреплен на эндонтелии капилляров с помощью гепарансульфата (это гликозаминогликан).
Липопротеид липаза расщепляет триглицериды хиломикронов до глицерола и высших жирных кислот. Часть высших жирных кислот поступает в клетки, а другая часть связывается с альбуминами и уносится током крови в другие ткани. Глицерин так же может утилизироваться либо в клетках непосредственно данного органа, либо уносится током крови. Кроме триглицеринов хиломикронов ЛП-липаза расщепляет также триглицериды липидов очень низкой плотности.
ХМ после атаки липопротеидлипаз, потеряв значительную часть липидов, превращаются в ремнантные хиломикроны (остаточные ХМ, они по размерам меньше). Эти ремнантные ХМ захватываются рецепторами печени, где они полностью расщепляются, а часть ХМ превращается путем сложных перестроек в липопротеиды высокой плотности.
В норме спустя 10-12 часов после приема пищи плазма практически не содержит ХМ.
Обмен холистерола.
Суточная потребность человека в холистероле составляет около 1 гр. Причем вся потребность в этом соединении может удовлетворяться с помощью эндогенного синтеза. Пищевой холистерол так же эффективно усваивается человеком. У здорового человека поступление холистерола с пищей и его эндогенный синтез хорошо сбалансирован. Так например поступление с пищей в течении суток 2-3 гр. холистерола полностью блокирует его эндогенный синтез.
Основным органом в котором идет синтез холистерола является печень. В печени человека синтезируется от 50 до 80% эндогенного холистерола, 10-15% синтезируется в клетках тонкого кишечника и около 5% образуется в коже, остальное в других органах и тканях. Т.е. объем синтеза в других органах и тканях не названных (дентине, цементе) вообще незначителен, хотя ферментная система обеспечивающая синтез этого соединения присутствует практически во всех органах и тканях.
В условиях обычного пищевого рациона во внутреннюю среду организма поступает около 300 мг экзогенного холистерола. 500 - 700 мг холистерола организм обычно при смешанной диете получает за счет эндогенного синтеза. Общее содержание холистерола в организме человека составляет примерно 140гр. Основная масса этого соединения включена в состав клеточных мембран, однако около 10гр. холистерола постоянно содержится в плазме крови, входя в состав липопротеидов. Концентрация холистерола в норме составляет 3,5-6,8 млмоль/л. Причем примерно всего 2/3 холистерола плазмы крови представлена в ней в виде сложных эфиров холистерина с жирными кислотами т.е. стероиды. Жирные кислоты связанные с холистерином это преимущественно линоливая и олеиновая. Избыток холистерола в клетках запасается в виде эфиров олеиновой кислоты, в то же время в состав мембран входит только свободный холистерол.
Биологическая роль холистерола
Холистерол используется в организме прежде всего
1) для синтеза желчных кислот в печени
2) из него синтезируются все стероидные гормоны
3) в коже из него образуется 7-дегидрохолистерин, который под действием УФ превращается в витамин D.
Как выводится холистерол?
Избыток холистерола выводится из организма желчью. Последнее время доказано, что часть избыточного холистерина может поступать в просвет кишечника непосредственно через его стенки. Таким образом холистериновый гамеостаз в организме является результатом динамического равновесия
во-первых процессов его поступления в организме эндогенного синтеза, и
во-вторых процесов использования холистерола для нужд клеток и его выведение из организма.
Ключевая роль в регуляции синтеза холистерола в клетках принадлежит ферменту ГМГ-КоАредуктазе.
При повышении содержания холистерола в клетках, в независимости от того синтезирован он здесь в клетках или поступил из вне происходит снижение активности этого фермента, причем установлено, что в данном случае речь идет не о прямом влиянии холистерола на активность фермента, а в основе ингибирующего действия лежат другие механизмы.
Патологии
Первичные
Наследственная гиперхиломикронемия.
У больных нарушена функция фермента липопротеидлипазы иливрезультатенаруше ния синтеза самого фермента или нарушение синтеза апопротеинаС2 который является активатором липопротеидлипазы.
В результате дефекта фермента в крови нарушается расщепление трилицеридов, входящих в состав ХМ и лпонп. Естественно в крови даже натощак повышено содержание триглицеридов, ХМ и лпонп. У таких больных развивается гепатоспленомегалия. Сильные боли в животе. Развиваются панкреатиты. Характерны так же ксантомы - доброкачественные опухоли из подкожной жировой ткани.
Семейная гиперхолистеринемия.
При этом заболевании в организме нарушен синтез рецепторов для лпнп. В результате этого нарушена утилизация этих липопротеидов.
Поэтому в крови таких больных всегда повышенно содержание лпнп, холистерола, причем содержание холистерола может в несколько раз превышать верхнюю границу нормы. (3,5-6,8 млмоль/л). Накопление в крови лпнп и холистерола быстро уже в юношеском возрасте приводит к развитию атеросклероза.
Тяжесть заболевания в значительной мере зависит от того один или оба гена белков-рецепторов дпнп дефектны. При дефекте одного из генов в клетках имеется половинное количество рецепторов для лпнп. Если дефектны оба гена, то рецепторов для лпнп вообще нет. Без соответствующего лечения больные редко доживают до 30 летнего возраста. Погибают они от инфаркта миокарда.
ГИПЕРЛИПОПРОТЕИНЕМИИ
Липопротеины в крови имеются постоянно, но их концентрация меняется в зависимости от ритма питания. После приема пищи концентрация липопротеинов повышается, достигает максимума через 4—5 ч, а затем вновь снижается. За нормальное принимают содержание липопротеинов у здоровых людей через 10-12 ч после еды (постабсорбтивное состояние; кровь для анализа берут утром до завтрака). В этом состоянии в крови здоровых людей отсутствуют хиломикроны и обнаруживаются только ЛОНП (около 15% от всех липопротеинов), ЛНП (60%) и ЛВП (25%).
Практически весь холестерин и все жиры плазмы крови находятся в липопротеинах. При повышенном содержании липопротеинов в крови (гиперлипо-протеинем ии) одновременно повышено содержание холестерина и жиров. Концентрация холестерина в большей мере связана с концентрацией ЛНП и ЛВП, а жиров—с концентрацией хиломикронов или ЛОНП
В связи с этим различают три формы гиперлипопротеинемии :
1) гиперхолестеринемия (повышена концентрация ЛНП или ЛВП);
2) гипертриацилглицерин емия (повышена концентрация хило-микронов или ЛОНП);
3) смешанная форма.
Гиперлипопротеинемии — очень распространенные нарушения обмена: они обнаруживаются примерно у каждого десятого человека.
Главная опасность гиперлипопротеинемий связана с тем, что повышается вероятность возникновения атеросклероза.
По механизму возникновения гиперлипопротеинемий делят на наследственные (первичные) и приобретенные (вторичные).
Вторичные гиперлипопротеинемий — обычное явление при таких хронических заболеваниях, как сахарный диабет, нефрозы, гепатиты, хронический алкоголизм.
Нарушение процессов всасывания жиров. Нарушения липидного обмена могут наступать уже в процессе переваривания и всасывания жиров. Одна группа расстройств связана недостаточным поступлением панкреатической липазы в кишечник, вторая группа —обусловлена нарушением поступления в кишечник желчи. Кроме того, нарушения процессов переваривания и всасывания липидов могут быть связаны с заболеваниями желудочно-кишечного тракта (при энтеритах, гиповитаминозах и некоторых других патологических состояниях) Образовавшиеся в полости кишечника моноглицериды и жирные кислоты не могут нормально всасываться из-за повреждения эпителиального покрова кишечника Во всех этих случаях кал содержит много нерасщепленного жира или невсосавшихся высших жирных кислот и имеет характерный серовато-белый цвет.
Нарушение процессов перехода жира из крови в ткани. При недостаточной активности липопротеинлипазы крови нарушается переход жирных кислот из (ХМ) плазмы крови в. жиpoвыe дeпо (нe расщепляются триглицериды) Чаще это наследетвенное заболевание, связанное с полным отсутствием активности липопротеинлипазы. Плазма крови при этом имеет молочный цвет из-за чрезвычайно высокого солержания ХМ. Наиболее эффективным лечением этого заболевания является замена природных жиров, содержащих жирные кислоты с 16—18 углеродными атомами, на синтетические, в состав которых входят короткоцепочечные жирные кислоты с 10-18 углеродными атомами. Этижирныекислоты способны всасываться из кишечника непосредственно в кровь без предварительного образования ХМ.
Атеросклероз.
Обнаруживается у всех без исключениях людей. Гиперлипопротеинемия и сопровождающая ее гиперхолистеринемия создает повышенную опасность к заболеванию атеросклерозом. Вероятность заболевания тем выше, чем выше холистериновый коэфицент атерогенности.
К= (ХСлпонп + ХСлпнп) / ХСлпвп N < 3,5
Главное биохимическое проявление атеросклероза - отложение холистерина в стенках артерий. Атеросклеротические изменения начинаются с появления так называемых липидных пятен и полосок на внутренней поверхности артерий в аорте они появляются примерно с 3-х лет. В коронарных сосудах к 15-20 годам. На месте пятен и полосок образуются утолщения получившее название - атеросклеротические бляшки. Если бляшку разрезать, то из нее выдавливается желтая кашица, состоящая почти целиком из эфиров холистерина. Бляшки могут изъязвляться, язвы зарастаются соединительной тканью с образованием рубца в котором откладываются соли кальция. Стенки сосудов деформируются становятся жесткими, нарушается моторика сосудов, суживается их просвет вплоть до полной закупорки.
Наиболее часты и опасны осложнения атеросклероза:
а) ишемическая болезнь сердца
б) инфаркты миокарда
в) инсульты
г) гангрена нижней конечности
Между отложениями холистерина в артериях и липопротеидами крови происходит двухсторонний обмен холистерина. Но что важно подчеркнуть при гиперхолистеринемии преобладает поток холистерина в стенки артерий. В крови увеличено содержание триглицеринов, холистерина, а так же содержание атерогенных лп (лпонп, лпнп). Методы профилактики и лечения атеросклероза направлены на то, что бы усилить обратный ток холистерина из стенок артерий в кровь. Это достигается путем уменьшения гиперхолистеринемии. Применяют обычно малохолистериновую диету, лекарства увеличивающие экскрецию холистерина, лекарства ингибирующие синтез холистерина и даже прямое удаление холистерина путем гемодиффузии.
Кетонемия и кетонурия.
В следствии недостаточности инсулина, что характерно для сахарного диабета, а так же при голодании, имеется относительная избыточность глюкагона (гормон панкреатической железы). По этой причине печень постоянно функционирует в режиме, который характерен для здоровых людей в постадсорбционном периоде. В это период в печени интенсивно окисляются жирные кислоты и интенсивно продуцируются кетоновые тела. Однако скорость синтеза кетоновых тел может превышать даже увеличенное в этих условиях потребление тканями. Развивается кетонемия. В норме кетоновых тел в крови меньше 2мг/дцл. При голодании может достигать до 30 а, при диабете до 350. При такой кетонемии развивается кетонурия. С мочой может выделяться до 5 гр кетоновых тел в сутки.
Кетоновые тела являются кислотами и поэтому снижают буферную емкость крови, а при высоких концентрациях снижают и рН крови. Возникает кетоацидоз. В норме рН крови = 7,4. При котонемии рН крови может уменьшаться до 7, что приводит к резкому нарушению функций головного мозга вплоть до потери сознания и развития тяжелейшей комы. Необходима интенсивная терапия.
Скачать полную версию шпаргалки [37,9 Кб] Информация о работе